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so as to cause the water -water  separat ion across the  
twofold axis to be only 2.63 A in calcium phosphate, 
whilst  it  is 3.2 /~ in gypsum. The la t ter  change lends 
support  to the idea tha t  the hydrogen is between the 
water  molecules in the dihydrogen phosphate  and tha t  
the result ing bond contraction is responsible for the 
slight general rearrangement .  

As has been previously reported (MacLennan & 
Beevers, 1956), the structure of monocalcium phos- 
phate  monohydra te  shows the same corrugated sheets 
of CAP04 as in the structure now being described. I t  
therefore seems possible tha t  these sheets are a com- 
mon feature of calcium phosphate  structures. They 
m a y  occur, for example,  in Ca3(PO4)~ (Mackay, 1953), 
a s tructure which shows vectors of 3-8 /~, which is 
approximate ly  equal  to the shortest Ca-Ca distance 
in the corrugated sheets. However, the sheets do not  

seem to be present  in the structure of Sra(P04) 2 
(Zachariasen, 1948). 
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Overlapped Atoms.  I. The Equation and its Properties 
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An equation between structure factors has been developed which holds precisely for centrosym- 
metric resolved structures containing not more than two types of atom. The form of the equation is 

1 1 
Fh ---- As" V ~h' Fh'Fh+h'  -~ Bs. ~ ~h' ~h'' Fh, Ph,'Fh+h'+h", 

where As and Bs are functions of s, the position vector of h in reciprocal space, and V is the volume 
of the unit cell. The equation may also be applied to resolved projections if V is replaced by A, 
the area, or l, the length, of the projection. 

I t  is shown that  the same equation will approximately hold in some cases of projections con- 
taining partially or completely overlapped equal atoms and also for resolved structures containing 
more than two types of atom. 

The theory of the equation is fully developed and its applicability to various types of structure 
is illustrated by numerical examples. 

1. I n t r o d u c t i o n  

Sayre (1952) was the first to show that ,  for a s tructure 
containing equal  resolved atoms, the structure factors 
are quan t i t a t ive ly  related to each other. This relation- 
ship is in the form of the equat ion 

1 
Fh : As-~ h ~,  Fh,Fh+h, , (1) 

the h '  under  the summat ion  sign indicat ing tha t  the 
summat ion  is taken  over all values of h ' .  The equat ion 
m a y  also be appl ied to two-dimensional  or one- 
d imensional  da ta  if V, the volume of the uni t  cell, is 

replaced by  either A, the area, or l, the  length of the  
projection. 

The equat ion was derived by  Sayre in the following 
way. For a structure containing equal resolved a toms 
the operation of squaring the electron density,  @r, 
retains the condition of equal  resolved atoms bu t  
changes the shape of each atom. I t  m a y  be shown in 
the case of a centrosymmetr ica l  s tructure tha t  

1 
-~ ,X Fh,Fh+h, 

h" 

equals the h th  Fourier  coefficient of @3. The factor As, 
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a function of the distance s of the point h from the 
origin of reciprocal space, corrects for the difference 
of shape of the atoms with electron distribution 0r 
and 0~, so tha t  

1 
As" ~ ~, Fh, Fh+h" , 

is made equal in value to Fh. 
Sayre's equation was the inspirational source of sign 

relationships (Cochran, 1952; Zachariasen, 1952) but 
the equation itself has been of much less practical 
value than its progeny. Direct methods of structure 
determination are most frequently applied to projec- 
tions of structures where the condition of equal re- 
solved atoms is the exception rather than the rule. 

In Par t  I of this paper is developed an equation 
between structure factors, which is often valid for 
structures containing unequal or overlapped atoms. 
The properties and limitations of the equation will be 
demonstrated both theoretically and by means of 
numerical examples. 

Par t  I I  will be devoted to the application of the 
equation as a fairly powerful tool for structure deter- 
ruination. 

2. T h e  e q u a t i o n  

:Let us consider a centrosymmetrical structure con- 
taining resolved isotropic atoms of two types, P and Q. 
The electron distribution for these two types of atom 
is such tha t  at distance u from their centres the elec- 
tron densities are (Ou)p and (0~)a respectively. Let 
the scattering factors of atoms P and Q be represented 
by the functions of s, f~ and fa. 

Now let us consider a point s in reciprocal space and 
form a function of the electron density, 0~, s, given by 

t 

0~,~ = A~0~ + B~0~, (2) 

where As and B~ are functions of s. 
The function 0r, s will represent atoms P and Q 

with the modified electron distribution 

and 
(Ou)p As ° 3 ' ---- (0u)~ + Bs (0u) p (3) 

(0~)Q- As(0u)~+Bs(0,,)~ • (4) 

The scattering factor for the transformed atom P 
will be 

f'e = A~(f2)e+B~(f3)P, (5) 

where (f2)p and (ff)e are the scattering factors cor- 
responding to atoms with radial distributions (0u)~ 
and (0u)~. Similarly 

f~ = A~(f2)Q+B~(f3)Q. (6) 

t 
Fourier coefficient of index h of 0r, s, where s is the 
position vector corresponding to h in reciprocal space. 
If the h th  Fourier coefficients of 02r and 03r are Gh and 
Hh respectively, then 

Fh = AsGn+BsHh. (7) 

We have already mentioned the result 

1 
G h = -~ ~ Fh,Fh+ h, (8) 

h '  

and it may  similarly be shown tha t  

1 1 
Hh = ~ ~h' Fh'Gh+h' = V-2h'Z ~h,, Fh'Fh"Fh+h'+h"" (9) 

There is then an equation between structure factors 

1 
Fh = A~. ~ hZ, Fh, Fh+ h, 

1 
+B~. ~ .~, _,Y Fh'Fh',Fh+h,+h', (10) 

h ' h "  

which may be applied to a structure consisting of iso- 
tropic resolved atoms of two types. 

3. A tes t  of the  e q u a t i o n  

In order to test equation (10) we shall, following 
Sayre's example, consider a one-dimensional model 
structure containing atoms with a Gaussian distribu- 
tion of electron density. The centrosymmetrical struc- 
ture taken as a model, for which the unit  cell is of 
length 20 A, contains eight atoms of electron distribu- 
tion 

(0u)p = 6~/2.exp [ - 2 ~ u  ~] 

with coordinates ±0.0625, ±0.1428, ±0.2500 and 
±0.4500, and two atoms of electron distribution 

(0u)Q = 12)/2. exp [ - 2 ~ u  ~] 

with coordinates ±0.3333. 
For the atoms of type P the scattering factor, fp, 

which is the Fourier transform of (0~)P, is given by 

f r =  I (eu)rCOS2Z~us.du--6exp[-~-z~s2], (11) 

and similarly 
fQ = ]2 exp [-½~8~]. 02) 

Values of 0~, 0~, (f~) and (f3) for P and Q are given 
in Table 1. 

Function 
For any particular value of s it is always possible e~ 

to find values of As and Bs such that  fp = fp and ~3 u 
f~ = fQ. With these values of As and Bs it is evident (f2) 
tha t  the structure factor of index h, Fh, equals the (f3) 

Table 1 

Atom P 
72 exp [--4zeu 2] 

432 )/2. exp [ -- 6nu ~] 
36 exp [-- ¼~s 2] 

144~/3 .exp [-- ]z~s e] 

Atom Q 
288 exp [-4zlu ~] 

3456 ]/2. exp [ - 6nu 9] 
144 exp [ -  ¼~s 2] 

1152 ~/3. exp [ - ~z~s 2] 
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h s A s  - - B s  

0 0-00 0.250 0.0120 
1 0.05 0.250 0.0120 
2 0.10 0.248 0.0119 
3 0.15 0.245 0.0118 
4 0.20 0.242 0.0116 
5 0.25 0.238 0.0113 
6 0-30 0.233 0.0110 
7 0"35 0.227 0.0107 
8 0.40 0.220 0.0103 
9 0.45 0.213 0.0098 

10 0-50 0.205 0.0093 
11 0"55 0"197 0.0088 
12 0"60 0" 188 0.0082 
13 0"65 0.179 0.0077 
14 0.70 0-170 0.0071 
15 0"75 0.161 0.0066 
16 0.80 0.151 0.0061 
17 0-85 0-142 0-0056 
18 0"90 0.132 0.0051 
19 0.95 0" I23 0.0046 
20 1-00 0.114 0.0041 
21 1.05 0"105 0.0037 
22 1.10 0.097 0"0033 
23 1.15 0.088 0.0030 
24 1.20 0.081 0.0026 
25 1.25 0-074 0-0023 
26 1.30 0.066 0.0020 

T a b l e  2 

Gh H h A sGh + BsHh Fh AsGh 
567.9 5779 72-5 72.0 55"0 

- -  99.1 --1591 - -  5 . 6  - -  4 - 9  - -  9.6 
--119.4 --1768 -- 8"6 -- 8"2 --11"5 

201"6 3272 10.8 10"3 19"1 
--108.1 --1671 -- 6.8 -- 6.7 --10"2 
-- 176"5 --2152 -- 17.7 -- 17"4 -- 16"3 

171.4 3003 7.0 6.2 15-5 
- -  85"3 --1501 -- 3"3 -- 3"3 -- 7"5 
--136"6 --1845 --11.1 --11.0 --11"7 

227"5 3313 16"0 15.7 19"8 
-- 323.7 -- 3178 -- 36"8 -- 36.8 -- 25"7 
--131"2 --1809 -- 9.9 -- 9"8 --10"0 

207.7 3111 13.6 13.2 15.1 
- -  19"9 -- 893 -- 3"3 -- 3.6 -- 1.4 
-- 79"0 --1349 -- 3"8 -- 3"3 -- 5.2 

248"9 3365 17-9 17"4 15.5 
6"6 -- 591 4.5 4.8 0"3 

-- 97.2 --1437 -- 5.7 -- 6"0 -- 5"3 
130"4 2311 5.4 5.2 6.7 

- -  89.4 --1330 -- 4-9 -- 4-6 -- 4.3 
19"8 -- 383 3.8 4.0 0.9 

104.4 1993 3"6 3.5 4.3 
-- 56"9 --1007 -- 2"2 -- 2"3 -- 2.1 
- -  89"5 --1336 -- 3"9 -- 4.0 -- 3"1 

73.4 1582 1.8 1"7 2-3 
-- 75.0 --1163 -- 2.9 -- 2.8 -- 2.2 
-- 76.7 --1206 -- 2.7 -- 2-6 -- 2.0 

V a l u e s  of As a n d  Bs s u c h  t h a t  f'p=fp a n d  f~=fQ 
s a t i s f y  t h e  e q u a t i o n s  

36 exp  [ -  ¼zs e] A s + 144 V3. e x p  [ -  ~ s  e] Bs 

= 6 e x p  [ - ½ ~ s  2] 
a n d  

144 e x p  [ -  ¼7~s2]As + 1152 V3. e x p  [ - ~ s e ] B s  

= 12 e x p  [ - ½ ~ s  2] , 

fo r  w h i c h  t h e  s o l u t i o n  is 

1 
As  = ¼ e x p  [ - ¼ ~ s  2] a n d  Bs 48~/3 e x p  [ - ½ ~ s  2] . 

S t r u c t u r e  f ac to r s ,  F h ,  w e r e  c a l c u l a t e d  for  t h e  m o d e l  
s t r u c t u r e  w i t h  i n d i c e s  u p  to  t h e  l i m i t  p e r m i t t e d  b y  
Cu Kc~ r a d i a t i o n .  V a l u e s  of Gh a n d  H b  w e r e  t h e n  f o u n d  
b y  t h e  a p p l i c a t i o n  of e q u a t i o n s  (8) a n d  (9). T h e s e  a r e  
s h o w n  in  T a b l e  2, t o g e t h e r  w i t h  t h e  v a l u e s  of 
AsGh+BsHh, w h i c h  m a y  be  c o m p a r e d  w i t h  t h e  a d j a -  
c e n t  v a l u e s  of F h .  I t  wi l l  be  s een  t h a t  t h e y  c o m p a r e  
r e m a r k a b l y  wel l ;  t h e  a g r e e m e n t  e x p r e s s e d  in  t e r m s  of 
t h e  n o r m a l l y  d e f i n e d  r e l i a b i l i t y  i n d e x  is 2 . 9 % .  T h e  
s m a l l  d i f f e r e n c e s  in  t h e  t w o  se t s  of f i gu re s  m a y  be  
a t t r i b u t e d  to  t h e  s l i gh t  o v e r l a p  of G a u s s i a n  a t o m s ,  
for  w h i c h  t h e  e l e c t r o n  d e n s i t y  does  n o t  fa l l  t o  zero  a t  
a f i n i t e  d i s t a n c e  f r o m  t h e  c e n t r e ,  a n d  also to  t h e  
l i m i t a t i o n  of t h e  m a x i m u m  v a l u e  of h i m p o s e d  b y  t h e  
w a v e l e n g t h  of Cu Kc~ r a d i a t i o n .  

I t  is i n t e r e s t i n g  t o  see h o w  wel l  S a y r e ' s  e q u a t i o n  
c a n  be  m a d e  to  a p p l y  to  th i s  e x a m p l e .  I t  is, of course ,  
i m p o s s i b l e  to  f i n d  a f a c t o r  A s s u c h  t h a t  Fh = AsGh 
s ince  th i s  w o u l d  i m p l y  v a l u e s  of A s s u c h  t h a t  

r 2 fp  = As ( f  )p (13) 

a n d  
fQ = A[~(f2)(~ (14) 

s i m u l t a n e o u s l y .  To  s a t i s f y  (13) a n d  (14) we  r e q u i r e  
A ~ = ~ e x p [ - ~ s  2] a n d  A s = ~ e x p [ - ¼ ~ s  2] re-  
s p e c t i v e l y .  A f a c t o r  A s = K e x p  [ - ¼ ~ s  2] is t a k e n  

s u c h  t h a t  
2~ IFhl = K 27 exp  [-~7~s~]l Gh[ 
h h 

a n d  t h e  v a l u e s  of AsGh a re  g i v e n  in  t h e  l a s t  c o l u m n  
of T a b l e  2. T h e  a g r e e m e n t  w i t h  t h e  v a l u e s  of F h  ex- 
p r e s s e d  as a r e l i a b i l i t y  i n d e x  is 3 3 % ,  w h i c h  is, as  
w o u l d  be  e x p e c t e d ,  a g r e e m e n t  of a m u c h  l o w e r  o r d e r  
t h a n  t h a t  o b t a i n e d  b y  t h e  a p p l i c a t i o n  of e q u a t i o n  (10). 

4 .  O v e r l a p p e d  a t o m s  

F o r  a s t r u c t u r e  c o n s i d e r e d  in  t h r e e  d i m e n s i o n s  t h e r e  
is o n l y  a s l i gh t  o v e r l a p  of t h e  e l e c t r o n  c o n t e n t  of 
d i f f e r e n t  a t o m s  a t  r e l a t i v e l y  l a r g e  d i s t a n c e s  f r o m  t h e  
a t o m i c  c e n t r e s .  H o w e v e r ,  fo r  s t r u c t u r e s  c o n s i d e r e d  in  
p r o j e c t i o n ,  as  t h e y  u s u a l l y  are ,  o v e r l a p  of a m u c h  m o r e  
s e v e r e  c h a r a c t e r  m a y  o c c u r .  One  t y p e  of p r o j e c t i o n  
f r e q u e n t l y  e n c o u n t e r e d  is t h a t  of a s t r u c t u r e  con-  
t a i n i n g  a p p r o x i m a t e l y  e q u a l  a t o m s  ( c a r b o n ,  n i t r o g e n  
a n d  o x y g e n )  p r o j e c t e d  d o w n  a n  ax i s  of b e t w e e n  4.5 
a n d  7.5 X.  I n  s u c h  p r o j e c t i o n s  a t o m s  a r e  o b s e r v e d  in  
a s p e c t s  v a r y i n g  f r o m  b e i n g  c o m p l e t e l y  i s o l a t e d  t o  
b e i n g  c o m p l e t e l y  o v e r l a p p e d .  A t  t h e  l a t t e r  e x t r e m e  t h e  
p a i r  of o v e r l a p p e d  a t o m s  w o u l d  p r e s e n t  t h e  s a m e  
a p p e a r a n c e  as a n  i s o l a t e d  a t o m  of d o u b l e  w e i g h t .  T h e r e  
a r e  a l so  i n t e r m e d i a t e  s i t u a t i o n s  w h e r e  a t o m s  m a y  be  
p a r t i a l l y  o v e r l a p p e d  in  v a r y i n g  deg rees .  

W e  sha l l  n o w  i n v e s t i g a t e  t h e  p o s s i b i l i t y  of a p p l y i n g  

A C 11 20 
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r =  o.oA 

0.0 12.00 12.00 
0-2 11.32 11-32 
0.4 9.37 9-37 
0.6 6.80 6.80 
0.8 4-38 4-38 
1.0 2.50 2.50 
1.2 1.24 1.24 
1.4 0.55 O.55 

Table 3 

r= 0.2A r= 0.4A r---- 0.6A r= 0.8A 

~°s ~°s ~ s  ~s  ~s  ~°s ~s ~s  
12"00 12"92 12"00 13"61 12"00 1 3 " 7 0  12"00 13"15 
10"98 11"43 10'57 12"60 9"83 11"40 8"70 9"66 
8"73 9"35 7"14 8"67 5"01 6"08 2"82 3"32 
5"38 6"59 3"65 4"44 1"36 1"81 0"03 0"07 
3"34 3"74 1"31 1-74 0"03 0"08 0"79 0"89 
1"64 1"88 0"24 0"41 0"24 0"06 1"64 1"36 
0"66 0"74 0"00 0"00 0"51 0"33 1"23 1"05 
0"23 0"28 0"03 0"00 0"44 0"31 0"48 0"40 

r= 1-0A 

9s ~s 

12"00 12"51 
7.43 7-81 
0-89 1-02 
0.65 0-55 
2.87 2.69 
2.49 2.36 
0.82 0.76 
O.06 0-04 

equat ion (10) to this type  of projection. If  the values 
t aken  for A s and  B s are those which satisfy equation 
(10) for single-weight and double-weight atoms, then  
atoms which are either isolated or completely over- 
lapped in projection will cause no error in the equation. 
We shall  now assess the error caused by a pair  of 
par t ia l ly  overlapped atoms by comparing the Fourier 
t ransform of the original electron densi ty with tha t  
of the electron-density function given by equation (2). 

Once more we shall, for mathemat ica l  convenience, 
use atoms of Gaussian electron dis t r ibut ion 

Q,, = K exp [-2z~u~]. (15) 

Consider two such atoms at 0 and 0 '  with centres 
separated by  the vector r. The total  electron densi ty 
at the point  X, a vector distance R from 0 is 

~R --  K exp [ -2ze (R)9]+K exp [ - 2 ~ ( r + R ) 2 ] .  (16) 

The Fourier  t ransform of the pair  of atoms at the 
point  s in reciprocal space is 

~s = ~)R cos 2erR. s dR 
R = ~  

1 
- 1/2 K exp [ -  ½zs ~] (1 + cos 2 z r .  s ) .  (17 ) 

Now 

Q~t = K2 {exp [-4z~(R)2]+exp [ - 4 x ( R + r ) 2 ]  

+ 2 exp [ - 2 ~ ( R )  z] exp [ - 2 ~ ( R + r ) 2 ] }  (18) 
and 

Q~ = K a {exp [ - 6 ~ ( R )  ~] + exp [ - 6 ~ ( R + r ) 2 ]  

+3  exp [ - 4 ~ ( R )  2] exp [ - 2 ~ r ( R + r )  2] 
+3  exp [ - 2 g ( R )  z] exp [ - 4 ~ ( R + r ) ~ ] } .  (19) 

The Fourier  t ransforms of ~ and ~ are 

(72) s = ½K ~' exp [-¼~rs ~] 

× { l + c o s  2 ~ r . s + 2  exp [ - ~ r  ~] cos n r . s }  (20) 
and 

1 Ka exp [ - ~ u s  ~] {1 + cos 2ur .  s 

+ 3  exp [ - ~ z r  ~3 (cos ~ z r . s + c o s  ~ z r . s ) } .  (21) 

The Fourier  t ransform of the electron-density func- 
t ion (2) for the pair  of atoms is 

~s '= As (q~2)s +Bs  (pa)s. (22) 

To show how 9s and ~ compare in a practical  case 
we shall  take K = 61/2, which corresponds to a toms 
of the type  used in the previous example.  In  fact  
q% and (p~ are functions or r, s and r .  s, but  in Table 3 
values of ~s and qps are compared for various values 
of r and s with r .  s always taken equal to r s .  This 
table shows tha t  the m a x i m u m  differences between 
~0s and 9s occur when r is about 0 . 5 / l .  For this  value 
of r, values of 9s and ~ are compared in Table 4 for 

r . s  = rs 

t s ( k  -1) ~s  9s  

0.0 12.00 13.91 12.00 13.91 12.00 
0.2 10-21 11.92 10.72 12.43 11.06 
0.4 6.10 7.34 7.85 
0.6 2.35 3-10 4.46 
0.8 0.42 0"76 1.97 
1.0 0.00 0.00 0.68 
1.2 0.12 0.01 0.12 
1.4 0.19 0.09 0.01 

Table 4 

r =  0.5A 
r . s  = i t s  r . s  = krs r . s  = 0 

13.91 12.00 13.91 
12.79 11-26 13-00 

9"08 8"84 10"20 9"30 10-72 
5.42 6"19 7.25 6"82 7.92 
2"48 3"70 4"32 4"38 5"08 
0.92 1-89 2.29 2.52 2.98 
0-21 0"83 1-02 1.26 1.48 
0.02 0"30 0.37 0"54 0-63 

varying  s in the four cases r .  s = r s ,  r .  s = ~-rs ,  r .  s = 

½ r s  and r .  s = 0. 
In  Table 5 the m a x i m u m  differences between Ts and 

qs for various values of s are compared with fs  for a 
single atom and it can be seen tha t  these differences 
amount  to the contribution of about  one-third of an 
atom. 

For the projection of a structure containing most ly  
isolated but  a few overlapped atoms, equat ion (10) 
might  be expected to apply  reasonably well, a l though 
not  so well as it does in the case of completely resolved 
atoms. 

Table 5 

fs for 
s (A -I)  (~Os-- ~s)max. single a tom (~s-- ~%)max.]fs 

0-0 1.91 6"00 0-32 
0.2 1.74 5"66 0.31 
0.4 1.42 4.68 0.30 
0.6 1.10 3.40 0.32 
0.8 0.70 2.19 0.32 
1.0 0.46 1.25 0.37 
1.2 0.22 0.62 0.35 
1.4 0.09 0.28 0.32 
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5. A test  of the equation with  overlapped a toms  

To test equation (10) for a structure with overlapped 
atoms we shall once again consider a one-dimensional 
model. The unit cell is of length 20 J~, as in the 
previous example, and contains ten atoms of electron 
distribution 

¢~ = 6 [/2. exp [ -  2~zu 2] 

with coordinates +0.0625, ±0.1000, ±0.2500, ±0.4444 
and ±0-4500. 

Two pairs of atoms are partially overlapped in each 
asymmetric unit, the interatomic distances being 
0.75 ~ and 0.112 A respectively. Values of Fh, Gh and 
Hh have been calculated for those reflexions allowdd 
by Cu K~ radiation and, with the same As and Bs as 
used in the example of § 3, values of Fh and As Gh + 
BsHh are compared in Table 6. The agreement be- 

Table 6 

h Gh Hh AsGh + BsHh Fh 

0 5 1 9 . 6  5 5 0 9  6 3 . 7  6 0 " 0  

1 - - 1 1 9 . 3  - - 2 4 4 6  - -  0 . 4  - -  1 . 9  

2 2 3 3 . 4  3 0 9 7  2 1 . 2  1 8 . 9  

3 - - 1 4 3 . 8  - - 1 9 6 9  - - 1 2 . 0  - - 1 1 . 8  

4 6 7 . 0  8 4 4  6 . 4  7 . 6  

5 - -  9 0 . 4  - -  5 6 0  - - 1 5 . 2  - - 1 3 " 2  

6 - - 2 9 6 . 0  - - 2 8 9 1  - - 3 7 " 2  - - 3 4 " 5  

7 7 2 . 8  1 5 9 5  - -  0"6  1-3 

8 - - 2 0 9 . 5  - -  3 0 2 8  - -  1 4 . 9  - -  1 3 . 3  

9 2 2 4 . 4  3 2 2 4  1 6 . 2  1 6 . 0  

10  - - 2 5 6 . 3  - - 3 4 0 1  - - 2 0 . 9  - - 2 1 . 1  

11 2 2 8 . 6  3 0 9 7  1 7 . 9  1 5 - 9  

12  - -  4 9 . 8  - -  1 2 9 6  1 .2  0 . 0  

] 3  9 5 . 3  1 3 3 9  6 -7  5 . 0  

14  - -  5 5 . 2  - - (  4 8 4  - -  6"0  - -  6 . 8  

15  - -  4 7 . 0  - -  7 2 2  - -  2 . 8  - -  2 . 9  

16  1 3 6 " 9  1 8 0 6  9 -7  9 . 9  

17 - - 1 0 7 - 0  - - 1 8 9 0  - -  4 . 6  - -  3 - 5  

18  1 2 1 . 4  2 0 9 3  5"3  6 .1  

19  - -  9 8 - 5  - - 1 9 7 0  - -  3 . 0  - -  2 . 0  

2 0  1 6 6 . 6  2 4 4 9  9 . 0  9"3 

21  - -  7 1 - 8  - - 1 4 0 7  - -  2 . 3  - -  2 . 0  

2 2  1 6 . 4  6 4 8  - -  0 . 5  - -  0 . 7  

2 3  - -  4 1 . 4  - -  5 7 9  - -  1 . 9  - -  2 . 4  

2 4  - -  1 8 . 5  - -  2 7 8  - -  0 . 8  - -  1 -2  

2 5  - -  1 . 0  3 2 1  - -  0 . 8  - -  1 . 2  

2 6  - -  8 5 . 4  - - 1 4 1 6  - -  2 . 8  - -  3 . 0  

tween these two sets of figures, expressed as a reli- 
ability index, is 10.3 %, an agreement inferior to that  
obtained in the previous example but still quite 
satisfactory. The conclusions drawn from the calcula- 
tions of § 4 are thus confirmed. 

6. A t o m s  of m o r e  than two types 

With appropriate values of the two parameters As 
and Bs, equation (10) will always hold precisely, or 
nearly so, for structures containing isolated atoms of 
only two types. For structures containing more than 
two types of atom it is obviously impossible to choose 
values of As and Bs such that  f '  = f for all the atoms 
simultaneously. There are two ways in which we might 

seek to overcome this difficulty. We could replace the 
function of the electron density, ~ ,  as given by (2), 
by a function containing a greater number of adjust- 
able parameters such as 

,, 2 3 cs~+ ~ ) r , s  = A s ~ ) r + B s ~ r +  . . .  , 

where the number of terms taken in the series equals 
the number of types of atom in the structure. This 
leads to an equation between structure factors of the 
form 

As Bs 
Fh V ~w FwFh+w + = .-~ Zh, ~ FwFw'Fh+w+ w" 

Us 
+ -V- ~ ~" ~ FwFw,Fw,,Fh+w+w,+w,,+ .... (23) 

h '  h "  h""  

Although this gives an exact equation for any struc- 
ture containing isolated atoms we shall not consider 
this type of equation any further. I t  will be shown in 
Part  I I  of this paper that  equation (10) can be a 
useful tool for structure determination when used in 
such a way that  great precision in the equality of the 
two sides is not required. In these circumstances the 
extra precision offered by equation (23) is more than 
offset by its greater complexity. 

The other method of attempting to overcome the 
shortage of parameters is to choose values for As and 
Bs in such a way that  f '  is approximately equal to f 
for all the atoms simultaneously. Let us consider a 
structure containing ~toms of several types but all of 
the same form, so that  (~u)z: = Kv/(u) for an atom of 
weight K, where v/(u) is a function of the distance u 
from the centre of the atom. 

Then 

(~u)~ = K2{v~(u))2 and (~)u)~ = Ka{~f(u)} a • 

Let ~s, ~rs and 0s be the values of the Fourier trans- 
forms of ~(u), {v/(u)} 9 and {~v(u)) a at the point s in 
reciprocal space. If the parameters As and Bs are 
chosen so that  

f'xl = f x l  and f'x2 = fK~ 
then 

KI~] s 2 3 = A s K l z s + B s K l O s  
and 

K2~ls = A s K ~ s  + BsK~Os . 

The solution of (24) and (25) gives 

(24) 

( 2 5 )  

As = (KI+K2)~]s and Bs 1 ~]s 
K1K2 gs K1K2 0s " 

With these values of the two parameters, we have 
for an atom of weight K 

f'K = AsK2~s  + BsK30s - 
K 2 

K1K2 (K1 +K2-K)~]s  • 

For the same atom we have fx  = K~]s, so that  

20* 
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f'K K ( K  1 + K ~ - K )  
= K1K~ " = ~'K, zcl, z~2 • (26) 

I t  will be noticed t ha t  ~,x, K~, x2 is not  a funct ion of S, 
which shows t ha t  the modified a tom acts as an a tom 
with the same form of scattering factor as the original 
a tom but  of different weight. The closeness of the value 
of YK, Kx, K2 to un i ty  gives an indicat ion of the extent  
to which f~  approximates  to f~. The general form of 
TK, i~'~, ~2 as a funct ion of K is shown in Fig. 1. The 

~'K, E1,K 2 

structure the comparat ively  poor agreement  between 
f~2 and f12 is of no consequence as far as equat ion (10) 
is concerned. 

I t  is not  ahvays possible to f ind values of As and B~ 
such t ha t  f~c and fK agree tolerably well for all the  
atoms of a structure. If an a tom of weight 12 was 
present in the previous example, then,  by choosing 
K 1 = 8 and K 2 = 16, we have 

7e, s, 16 = 0.84, Y7, 8, 16 = 0"93, 78, s, 16 = 1.00, 

7t2, s, 16 = 1.12, 7 1 7 , 8 , 1 6  = 0"93. 

1.0 m 

Fig .  1. T h e  f o r m  of ~/K, K1, K2 as 8, f u n c t i o n  of  K .  

This spreads the discrepancies between fK and fl~ 
fairly uniformly among the various types  of a tom,  
but  whether  or not  this is the  best th ing to do will 
depend on the composition of the structure.  If  there 
are nz~ atoms of weight K, then  the average contribu- 
t ion of this group of atoms to a s t ructure factor  is 
propor t ional  to K]/n~. The most  sensible values of 
A~ and Bs would clearly be those which gave the least 
f ~ - f ~  discrepancy for the type  of a tom for which 
Kl/n  ~ is greatest,  and vice versa. I t  is not  always 
possible to satisfy this condition. 

diagram is symmetr ical  about  the ordinate  K = 
½(KI+K2), for which value of K there is a max imum 
value of 7x, K1, K2" 

Let us take  as an example K 1 = 6 and K 2 = 12. 
The values of 7x, K~, ZC2 corresponding to various values 
of K are shown below: 

K yK, 6, le K ~]~', (;, 12 

2 0.44 10 1.11 
3 0.62 11 1.07 
4 0.78 12 1.00 
5 0"90 13 O'9O 
6 1.00 14 0"78 
7 1-07 15 0"62 
8 1"11 16 0.44 
9 1.12 

For  atoms with weights in the range 5-13, f g  and 
fK do not  differ by more t han  ±12%.  

In  practice it  is not  often required t ha t  f g  should 
approximate  to f x  for the whole of a range of values 
of K. As an example, we may  consider a s t ructure  
containing a toms of relat ive weights 6 : 7 : 8 : 17. 

If we choose K 1 = 7, K~. = 17 then 

Y6,7,17 = 0"91, ~27,7,17 ~--- 1"00, ~8,7,17 = 1"07, 

Y17, 7,17 = 1"00, 

and,  for all the atoms of the  structure,  f~  and fK 
will agree tolerably well. I t  should be noted t ha t  for 
an  a tom of weight 12, in the range 6-17, 

~'12, 7,17 = 1"21 , 

but  since atoms of this weight do not  occur in the 

7 .  A t e s t  o f  t h e  e q u a t i o n  w i t h  a t o m s  o f  m o r e  t h a n  
t w o  t y p e s  

The one-dimensional model s t ructure  used for this 
test  has the  unit-cell  dimension 20 /~ and contains 
a toms for which the electron dis t r ibut ion has the  form 

(~)i~ = Kl /2 . exp  [ -2~u2]  . 

The uni t  cell contains 

6 atoms with K = 6 and coordinates ±0.025, 
+0.200 and ±0.245, 

4 atoms with K = 8 and coordinates ±0.100 
and ±0.470, 

2 atoms with K = 12 and coordinates ±0.150 

and 

4 atoms wi th  K = 17 and coordinates +0.330 
and ±0.420. 

The values of K V n  K are 14.7, 16.0, 17.0 and 34-0 
for K = 6, 87 12 and 17 respectively, Cko0~ing K 1 = 8 
and K 2 = 17 we have 

Te, 8, i7 = 0"84, 7s, s, 17 = 1"00, ~12,8,17---~ 1-15, 

and 717, s, 17 = 1.00. 

In  Table 7 the values of AsGh+BsHh  and Fh are 
compared for the range of h within the limits imposed 
by Cu K a  radiat ion.  I t  will be seen t ha t  the agreement  
is quite good, the convent ional  rel iabil i ty index being 
12-1%. 
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Tab le  7 

h Gh Hh AsGh+BsHh 

0 1950.2 15281 163.8 
1 --271.0 -- 2454 --18.6 
2 608-4 6544 28.5 
3 --328.6 --4405 -- 4.2 
4 -- 80.9 -- 788 -- 4.7 
5 -- 782-8 -- 8565 -- 34-0 
6 74.6 418 7.9 
7 --586.4 -- 5663 -- 33.8 
8 340.9 3857 13.3 
9 285.2 2966 13-9 

10 360.1 3765 17-1 
11 481.9 5266 20.9 
12 --108-8 -- 691 -- 8-9 
13 --103.3 -- 442 --10.0 
14 --376.0 --4352 -- 14.4 
15 --444.5 --3243 -- 29.7 
16 --587-4 -- 6528 -- 22.7 
17 397.8 3594 20.1 
18 --463.1 --4289 -- 21-7 
19 429.7 5798 10.6 
20 53.3 526 2-2 
21 298.5 4246 6.5 
22 -- 34.1 -- 983 0.9 
23 127.6 1834 2.4 
24 --338.9 --4604 -- 7.4 
25 -- 13-3 -- 44 -- 0.6 
26 --168.4 --2976 -- 2.0 

Fh 

160.0 
--14.9 

25.3 
- -  8-3 
- -  2.1 
--29-9 

4.0 
--29.2 

9.9 
13.6 
18.1 
18.6 

- -  7.7 
- -  8.8 
--18.6 
--29.2 
--23.4 

22.3 
--22.8 

9.9 
0.4 
7.7 
1.1 
2.4 

- -  7.4 
- -  0 . 8  

- -  1 - 5  

8. T h e  a p p l i c a t i o n  o f  t h e  e q u a t i o n  to  
n o n - G a u s s i a n  a t o m s  

So far ,  t he  a t o m s  cons ide red  in th is  p a p e r  h a v e  been  
of s imple  Gauss ian  shape  and ,  whe re  two  or more  t y p e s  
of a t o m  h a v e  been  p r e s e n t  in t he  s ame  s t ruc tu re ,  t h e y  
h a v e  been  a s s u m e d  as h a v i n g  the  same  shape,  d i f fer ing 
on ly  in m a g n i t u d e .  H o w e v e r ,  w h e n  t h e r e  are  on ly  two  
t y p e s  of reso lved  a t o m s  in a s t ruc tu re ,  va lues  of As 

a n d  Bs can a lways  be f o u n d  to  s i m u l t a n e o u s l y  sa t i s fy  
equa t i ons  (5) a n d  (6) w h a t e v e r  t he  shapes  of t he  a toms .  
E q u a t i o n  (10) can  t h u s  be used  w i th  no loss of accu- 
racy .  

F o r  s t r uc tu r e s  con t a in ing  un re so lved  a t o m s  all of 
one type ,  such  as t he  mode l  s t r u c t u r e  in § 4, t h e  
obse rved  s t r u c t u r e  fac tors  m a y  be mod i f i ed  to  cor- 
r e spond  to  a t o m s  of a n y  shape ,  i nc lud ing  Gauss ian  
if so desired.  An  e x a m p l e  of th is  p r o c e d u r e  was  g iven  
b y  Say re  (1952). 

S t r u c t u r e s  con t a in ing  a t o m s  of more  t h a n  two  types  
are  a l i t t le  more  compl i ca t ed .  Values  of As a n d  Bs 
m a y  be chosen to  sa t i s fy  equa t ions  (5) a n d  (6) for  
a n y  two  t y p e s  of a t o m  p re sen t  in t he  s t r u c t u r e  bu t ,  
if th is  is done ,  t h e  va lues  of ~,~, Ks, ~ for  t he  r ema in -  
ing a t o m s  will v a r y  w i t h  t he  vec to r  s. I t  is neve r the le s s  
qu i te  possible to f ind  ~,~, K1, K~ as a func t i on  of s, shou ld  
th is  be r equ i r ed ,  as t h e  s ca t t e r i ng  fac tors  for t h e  
var ious  t ypes  of a t o m  are  u s u a l l y  k n o w n .  H o w e v e r ,  
as has  been  p r ev ious ly  s t a t ed ,  e q u a t i o n  (10) is nor-  
m a l l y  used  on ly  in a non-prec i se  w a y  a n d  va r i a t i ons  
in t h e  va lues  of YK, i~1, ~ will  n o t  be too i m p o r t a n t  as 
long as t h e y  s t ay  w i th in  r easonab le  l imits .  
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ing Mach ine  L a b o r a t o r y ,  for c o m p u t i n g  faci l i t ies  w i th  
t he  F e r r a n t i  Mark  I c o m p u t e r .  
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