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so as to cause the water—water separation across the
twofold axis to be only 2:63 A in calcium phosphate,
whilst it is 3-2 A in gypsum. The latter change lends
support to the idea that the hydrogen is between the
water molecules in the dihydrogen phosphate and that
the resulting bond contraction is responsible for the
slight general rearrangement.

As has been previously reported (MacLennan &
Beevers, 1956), the structure of monocalcium phos-
phate monohydrate shows the same corrugated sheets
of CaPO, as in the structure now being described. It
therefore seems possible that these sheets are a com-
mon feature of calcium phosphate structures. They
may occur, for example, in Cay(PO,), (Mackay, 1953),
a structure which shows vectors of 3-8 A, which is
approximately equal to the shortest Ca—Ca distance
in the corrugated sheets. However, the sheets do not
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seem to be present in the structure of Sry;(PO,),
(Zachariasen, 1948).
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An Equation between Structure Factors for Structures Containing Unequal or

Overlapped Atoms. I. The Equation and its Properties

By M. M. WoOLFSON
Physics Department, College of Science and Technology, Manchester 1, England

(Received 2 September 1957)

An equation between structure factors has been developed which holds precisely for centrosym-
metric resolved structures containing not more than two types of atom. The form of the equation is

1
Fp=A4¢- -2 Fh,Fh+h,+Bs-—l 2 Py Py Fyipin s
Vo vy w
where As and Bs are functions of s, the position vector of h in reciprocal space, and V is the volume
of the unit cell. The equation may also be applied to resolved projections if V is replaced by A4,
the area, or I, the length, of the projection.

It is shown that the same equation will approximately hold in some cases of projections con-
taining partially or completely overlapped equal atoms and also for resolved structures containing
more than two types of atom.

The theory of the equation is fully developed and its applicability to various types of structure

is illustrated by numerical examples.

1. Introduction

Sayre (1952) was the first to show that, for a structure
containing equal resolved atoms, the structure factors
are quantitatively related to each other. This relation-
ship is in the form of the equation

1
Fh=AST/2Fh’Fh+h" (1)
v

the h’ under the summation sign indicating that the
summation is taken over all values of h’. The equation
may also be applied to two-dimensional or one-
dimensional data if V, the volume of the unit cell, is

replaced by either 4, the area, or /, the length of the
projection.

The equation was derived by Sayre in the following
way. For a structure containing equal resolved atoms
the operation of squaring the electron density, g,
retains the condition of equal resolved atoms but
changes the shape of each atom. It may be shown in
the case of a centrosymmetrical structure that

1
72 FuFusw

equals the Ath Fourier coefficient of g%. The factor A,
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a function of the distance s of the point h from the
origin of reciprocal space, corrects for the difference
of shape of the atoms with electron distribution g,
and Z, so that

1 .
As'T,th'Fthh',
”

is made equal in value to Fy.

Sayre’s equation was the inspirational source of sign
relationships (Cochran, 1952; Zachariasen, 1952) but
the equation itself has been of much less practical
value than its progeny. Direct methods of structure
determination are most frequently applied to projec-
tions of structures where the condition of equal re-
solved atoms is the exception rather than the rule.

In Part I of this paper is developed an equation
between structure factors, which is often valid for
structures containing unequal or overlapped atoms.
The properties and limitations of the equation will be
demonstrated both theoretically and by means of
numerical examples.

Part II will be devoted to the application of the
equation as a fairly powerful tool for structure deter-
mination.

2. The equation

Let us consider a centrosymmetrical structure con-
taining resolved isotropic atoms of two types, P and Q.
The electron distribution for these two types of atom
is such that at distance % from their centres the elec-
tron densities are (gu)p, and (gu), respectively. Let
the scattering factors of atoms P and @ be represented
by the functions of s, f, and f,.

Now let us consider a point s in reciprocal space and
form a function of the electron density, gr,s, given by

0r,s = 4502+ Beot, (2)

where 4 and Bs are functions of s.
The function g, ¢ will represent atoms P and @
with the modified electron distribution

(@L)P = 4s (Qu);"'Bs (Qu):; (3)
and
(0u)q = 4s(0.)5+Bs(0.)y - (4)
The scattering factor for the transformed atom P
will be
fe=As(f*)p+Bs(f*)p, (5)

where (f2)p, and (f3)p are the scattering factors cor-
responding to atoms with radial distributions (g,)%
and (g,)%. Similarly

o =As(f*)q+Bs(fq- (6)

For any particular value of s it is always possible
to find values of 4s and Bs such that fp = fp and
fo = fo- With these values of 4g and Bg it is evident
that the structure factor of index h, Fy, equals the
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Fourier coefficient of index h of g, ¢, where s is the
position vector corresponding to h in reciprocal space.
If the hth Fourier coefficients of p2 and g2 are Gy and
Hy, respectively, then

Fll = ASGh+BSHh' (7)

We have already mentioned the result
1
On = 5 = Fur o (8)
and it may similarly be shown that
1 1 .
Hy = 7 %' FoGoin = 72 5 %ﬂ FoFy Fonin- (9)
There is then an equation between structure factors
1
Fy = A 87 S FpFy
™

1

+Bs+ 72 %5 FyFyFoynyne (10)

which may be applied to a structure consisting of iso-
tropic resolved atoms of two types.

3. A test of the equation

In order to test equation (10) we shall, following
Sayre’s example, consider a one-dimensional model
structure containing atoms with a Gaussian distribu-
tion of electron density. The centrosymmetrical struc-
ture taken as a model, for which the unit cell is of
length 20 A, contains eight atoms of electron distribu-
tion
(04)p = 6)/2.exp [~27u?]

with coordinates +.0-0625, +0-1428, +4.0-2500 and
+0-4500, and two atoms of electron distribution

(0u)q = 12)/2.exp [—27u?]

with coordinates +0-3333.
For the atoms of type P the scattering factor, f,
which is the Fourier transform of (g,),, is given by

o
Sp =S (0u)p cOs 2rus.du = 6 exp [—}ns?], (11)
and similarly
fq =12 exp [~}ns?]. (12)

Values of g%, o3, (f2) and (f?) for P and @ are given
in Table 1.

Table 1
Function Atom P Atom @
0% 72 exp [—4nu?] 288 exp [ —4mu?]
03 432)2.exp [—67u?] 3456)2.exp [— 67u2]
%) 36 exp [— }ms?] 144 exp [— }ns?]
() l44y3.exp [—4ns?]  11523.oxp[— ins?]
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Table 2
h s Ag —Bg Gh Hp AgGn+BgHn Fy AgGn
0 0-00 0-250 0-0120 567-9 5779 72-5 72-0 55-0
1 0-05 0-250 0-0120 — 991 —1591 — 56 — 49 — 96
2 0-10 0-248 0-0119 — 1194 —1768 — 86 — 82 —11:5
3 0-15 0-245 0-0118 201-6 3272 10:8 10-3 19-1
4 0-20 0-242 0-0116 —108-1 — 1671 — 68 — 67 —10-2
5 0-25 0-238 0-0113 —176'5 —2152 —17:7 —174 —16-3
6 0-30 0-233 0-0110 171-4 3003 7-0 6-2 15-5
7 0-35 0-227 0-0107 — 853 — 1501 — 33 — 33 - 75
8 0-40 0-220 0-0103 —136-6 — 1845 —11-1 —11-0 —11-7
9 0-45 0-213 0-0098 227-5 3313 16:0 15-7 19-8
10 0-50 0-205 0-0093 —323-7 —3178 —36-8 —36-8 —25-7
11 0-55 0-197 0-0088 —131-2 — 1809 — 99 — 98 —10-0
12 0-60 0-188 0-0082 207-7 3111 13:6 13-2 15-1
13 0-65 0-179 0:0077 — 199 — 893 — 33 — 36 — 14
14 0:70 0-170 0-0071 — 79-0 — 1349 — 38 — 33 — 52
15 0-75 0-161 0-0066 248-9 3365 17-9 17-4 15-5
16 0-80 0-151 0:0061 6:6 — 591 45 4-8 0-3
17 0-85 0-142 0-0056 — 972 — 1437 — 57 — 60 — 53
18 0-90 0-132 0-0051 130-4 2311 54 5-2 6:7
19 0:95 0-123 0:0046 — 894 —1330 — 49 — 4-6 — 4-3
20 1-00 0-114 0:0041 19:8 — 383 3-8 4-0 0-9
21 1-05 0-105 0-0037 104-4 1993 36 3-5 4-3
22 1-10 0-097 0:0033 — 569 —1007 —_ 22 — 23 — 2:1
23 1-15 0-088 0-0030 — 89-5 — 1336 — 39 — 40 — 31
24 1-20 0-081 0-:0026 73-4 1582 1-8 1-7 2:3
25 1-25 0-074 0-0023 — 75:0 —1163 — 29 — 2:8 — 22
26 1-30 0-066 0:0020 — 767 — 1206 — 2.7 — 26 — 2.0

Values of As and Bs such that fr=fp and fo=fg
satisfy the equations

36 exp [—1ms?]As+144)/3.exp [—§ms?] Bs
and = 6 exp [—1ms?]

144 exp [—}ms?]As +1152)/3 . exp [ —47s?] Bs

= 12 exp [—37s?],
for which the solution is
As = L exp[—~ins?] and Bs = _Z8l|/§ exp [—ims?].

Structure factors, Fy, were calculated for the model
structure with indices up to the limit permitted by
Cu K« radiation. Values of Gy and H)y, were then found
by the application of equations (8) and (9). These are
shown in Table 2, together with the values of
AGp+BsHyp, which may be compared with the adja-
cent values of Fy. It will be seen that they compare
remarkably well; the agreement expressed in terms of
the normally defined reliability index is 2:99%. The
small differences in the two sets of figures may be
attributed to the slight overlap of Gaussian atoms,
for which the electron density does not fall to zero at
a finite distance from the centre, and also to the
limitation of the maximum value of h imposed by the
wavelength of Cu K« radiation.

It is interesting to see how well Sayre’s equation
can be made to apply to this example. It is, of course,
impossible to find a factor A, such that Fn = 4,Gn
since this would imply values of A such that

fp=As(f)p (13)

AC11

and
fo=4s(fYe (14)
simultaneously. To satisfy (13) and (14) we require
As =texp [—}ns?] and A= fexp [—}ns?] re-
spectively. A factor A, = K exp [—}ms?] is taken
such that
%IFhI = KZh exp [—}7s®]| Gl

and the values of A;G,, are given in the last column
of Table 2. The agreement with the values of Fy ex-
pressed as a reliability index is 339%, which is, as
would be expected, agreement of a much lower order
than that obtained by the application of equation (10).

4. Overlapped atoms

For a structure considered in three dimensions there
is only a slight overlap of the electron content of
different atoms at relatively large distances from the
atomic centres. However, for structures considered in
projection, as they usually are, overlap of a much more
severe character may occur. One type of projection
frequently encountered is that of a structure con-
taining approximately equal atoms (carbon, nitrogen
and oxygen) projected down an axis of between 4-5 A
and 7-5 A. In such projections atoms are observed in
aspects varying from being completely isolated to
being completely overlapped. At the latter extreme the
pair of overlapped atoms would present the same
appearance as an isolated atom of double weight. There
are also intermediate situations where atoms may be
partially overlapped in varying degrees.

We shall now investigate the possibility of applying

20
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Table 3
r=00A4A r=024 r=044 r=06A r=08A r=10A
s (A7) g ?q ?s Ps ®s ?s ?s Ps ?s ®s ®s ?s
0-0  12:00 12:00 12:00 1292  12.00 1361  12.00 1370 1200 1315 1200  12-51
02 1132 1132 1098 1143 1057 1260 983 1140 8-70 9-66 743 7.81
04 9-37 9-37 873 9-35 714 867 501 6-08 2.82 3-32 0-89 1-02
-6 6:80 6-80 5-38 6-59 3.65 444 1-36 1-81 0-03 0-07 0-65 0-55
0-8 4-38 4-38 3-34 374 1-31 1-74 0-03 0-08 0-79 0-89 2.87 2-69
1-0 2:50 2:50 1-64 1-88 0-24 0-41 0-24 0-06 1-64 1-36 2:49 2:36
1-2 1-24 1-24 0-66 0-74 0-00 0-00 0-51 0-33 1-23 1-05 0-82 0-76
14 055 0-55 0-23 0-28 0-03 0-00 0-44 0-31 0-48 0-40 0-06 0-04
equation (10) to this type of projection. If the values @s'= As(¢?)s+ Bs(¢3)s - (22)

taken for A, and B, are those which satisfy equation
(10) for single-weight and double-weight atoms, then
atoms which are either isolated or completely over-
lapped in projection will cause no error in the equation.
We shall now assess the crror caused by a pair of
partially overlapped atoms by comparing the Fourier
transform of the original electron density with that
of the electron-density function given by equation (2).

Once more we shall, for mathematical convenience,

use atoms of Gaussian electron distribution
0. = K exp [~2mu?]. (15)

Consider two such atoms at O and O’ with centres
separated by the vector r. The total electron density
at the point X, a vector distance R from O is

Or = K exp [-27(R)?]+ K exp [-2x(r+R)2] . (16)

The Fourier transform of the pair of atoms at the
point s in reciprocal space is

o0
‘PS=S

=—00

or cos 27R.sdR

= l—/léKexp [—4ns2](1+cos 2nr.s) . (17

Now

ok = K2 {exp [—4n(R)?]+exp [—dm(R+r)2]
+2 exp [-2n(R)*] exp [-27(R+1)%]} (18)
and
r = K*{exp [~67(R)?] + exp [—6n(R+1)2]
+3 exp [—47z(R)?] exp [—27(R+1)?]

+3 exp [—27(R)?] exp [—4z(R+r)2]}.  (19)

The Fourier transforms of % and g3 are

(@%)s = $K? exp [—}ns?]
x{1+cos 2ar.s+2 exp [—nr?] cos nr.s}  (20)
and

1
(@%)s = % K3 exp [—47s®]{1 + cos 2ar.s

+3 exp [—37r?] (cos gnr.s+cos dnr.s)}.  (21)

The Fourier transform of the electron-density func-
tion (2) for the pair of atoms is

To show how ¢ and ¢g compare in a practical case
we shall take K = 6)/2, which corresponds to atoms
of the type used in the previous example. In fact
@s and g are functions or 7, s and r.s, but in Table 3
values of @5 and s are compared for various values
of r and s with r.s always taken equal to rs. This
table shows that the maximum differences between
®s and @s oceur when 7 is about 0-5 A. For this value
of r, values of g5 and gg are compared in Table 4 for

Table 4
r=054

r.s =178 r.s = §rs r.s = irs r.s=0

S(ATY) s @i @ @ @ @i @s @l

0-0 12:00 13-91 12-00 13-91 12-00 13-91 12:00 13-91
0-2 10-21 11-92 10-72 12-43 11-06 1279 11-26 13-00
04 610 7-3¢ 7-85 908 884 10-20 9-30 10-72
06 235 310 446 542 619 725 682 792
0-8 042 076 197 248 370 4-32 4-38 5-08
1.0 000 0-00 068 092 1-89 229 252 2.98
12 012 001 012 0-21 0-83 102 126 1-48
14 019 009 001 002 030 037 054 063

varying s in the four cases r.s = rs, r.s = §rs, r.s =
irs and r.s = 0.

In Table 5 the maximum differences between @s and
@s for various values of s are compared with f, for a
single atom and it can be seen that these differences
amount to the contribution of about one-third of an
atom.

For the projection of a structure containing mostly
isolated but a few overlapped atoms, equation (10)
might be expected to apply reasonably well, although
not so well as it does in the case of completely resolved

atoms.

Table 5
fs for
s (A—l) (¢;_¢s)max_ single atom  (@g— @Ps)max./fs
0-0 1-91 6-00 0-32
02 1-74 5:66 0-31
04 1-42 4-68 0-30
0-6 1-10 3-40 0-32
0-8 0-70 2.19 0-32
1.0 0-46 1-25 0-37
1.2 0-22 0-62 0-35
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5. A test of the equation with overlapped atoms

To test equation (10) for a structure with overlapped
atoms we shall once again consider a one-dimensional
model. The unit cell is of length 20 A, as in the
previous example, and contains ten atoms of electron
distribution

0y = 6)/2.exp [—2nu?]

with coordinates +0:0625, +0-1000, 4+0-2500, +0-4444
and +0-4500.

Two pairs of atoms are partially overlapped in each
asymmetric unit, the interatomic distances being
075 A and 0-112 A respectively. Values of F, Gy and
Hy, have been calculated for those reflexions allowéd
by Cu K« radiation and, with the same A4g and B as
used in the example of § 3, values of Fy, and 4;Gn+
BgHy, are compared in Table 6. The agreement be-

Table 6
h Gn Hp AsGh+ BsHp Fn
0 519-6 5509 63-7 60-0
1 —119-3 —2446 — 04 - 19
2 2334 3097 21-2 189
3 —143-8 — 1969 —12:0 —11-8
4 67-0 844 6-4 7-6
5 — 904 — 560 —15-2 —13-2
6 —296-0 —2891 —37-2 —34-5
7 72-8 1595 — 06 1-3
8 —209-5 — 3028 —14-9 —13-3
9 224-4 3224 16-2 16-0
10 —256-3 — 3401 —20-9 —21-1
11 228-6 3097 17-9 15-9
12 — 498 — 1296 1-2 0-0
13 953 1339 6-7 5-0
14 — 552 —, 484 — 60 — 68
15 — 470 — 722 2-8 2-9
16 136-9 1806 9-7 9-9
17 —107-0 — 1890 — 46 — 35
18 121-4 2093 53 6-1
19 — 985 —1970 — 30 — 20
20 166-6 2449 9-0 9-3
21 — 71-8 —1407 - 2:3 — 20
22 16-4 648 — 05 — 07
23 — 414 — 579 — 19 — 24
24 — 185 — 278 — 08 - 1.2
25 — 10 321 — 0-8 — 12
26 — 854 — 1416 — 28 — 30

tween these two sets of figures, expressed as a reli-
ability index, is 10-3 %, an agreement inferior to that
obtained in the previous example but still quite
satisfactory. The conclusions drawn from the caleula-
tions of § 4 are thus confirmed.

6. Atoms of more than two types

With appropriate values of the two parameters Ag
and Bs, equation (10) will always hold precisely, or
nearly so, for structures containing isolated atoms of
only two types. For structures containing more than
two types of atom it is obviously impossible to choose
values of As and B, such that f' = f for all the atoms
simultaneously. There are two ways in which we might
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seek to overcome this difficulty. We could replace the
function of the electron density, g, as given by (2),
by a function containing a greater number of adjust-
able parameters such as
0rs = A0t +Bgi+0s00+. ..,

where the number of terms taken in the series equals
the number of types of atom in the structure. This
leads to an equation between structure factors of the
form

A B
Fy = 75 .h;‘ FyFpiw+ 7: %‘ % FyFyFoypepn

C .
+ s >3 Fh'Fh"Fh"’Fh+h'+h"+h"'+ ces

ol (23)
Although this gives an exact equation for any struc-
ture containing isolated atoms we shall not consider
this type of equation any further. It will be shown in
Part II of this paper that equation (10) can be a
useful tool for structure determination when used in
such a way that great precision in the equality of the
two sides is not required. In these circumstances the
extra precision offered by equation (23) is more than
offset by its greater complexity.

The other method of attempting to overcome the
shortage of parameters is to choose values for 45 and
Bs in such a way that f’ is approximately equal to f
for all the atoms simultaneously. Let us consider a
structure containing atoms of several types but all of
the same form, so that (p,); = Ky(%) for an atom of
weight K, where y(u) is a function of the distance u
from the centre of the atom.

Then

(Qu)%{ = Kz{’#(u)}z and (Qu)?{ = K3{1/’(u)}3 .

Let #s, ts and 85 be the values of the Fourier trans-
forms of y(u), {y()}* and {y(x)}® at the point s in
reciprocal space. If the parameters As and Bg are
chosen so that

f.’K1=fK1 and f},Q:sz
K ns = AsK3ms+ B K30

then
(24)
and

Kyne = AsKims+ B K30, . (25)
The solution of (24) and (25) gives

(K1+K2)77$ 1 s
Ay = 1T R2) s By— ——_Us
= REK, m 4B K, K, 0,

With these values of the two parameters, we have
for an atom of weight K.

, K2
fr = AsK2mg+ BK305 = 7K, Kt K=K,

For the same atom we have f; = Kz, so that

20*
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fx _ K(K,+K,—K)

J K 26
T KK, (26)

= YE Ky, ks -

It will be noticed that yx x,, k, is not a function of s,
which shows that the modified atom acts as an atom
with the same form of scattering factor as the original
atom but of different weight. The closeness of the value
of g, g, £k, t0 UNity gives an indication of the extent
to which fz approximates to fz. The general form of
V&, iy, K, 8 a function of K is shown in Fig. 1. The

VKKK,

1.0 e —

Ki 3(KitKy) Ky K

Fig. 1. The form of yy, gy, g, &8s & function of K.

diagram is symmetrical about the ordinate K =
$(K,+K,), for which value of K there is a maximum
value of yg g, g,

Let us take as an example K; = 6 and K, = 12.
The values of vz 1 x, corresponding to various values
of K are shown below:

™

VE, ¢ 12 K V&, 612

2 0-44 10 1-11
3 0-62 11 1-07
4 0-78 12 1-00
5 0-90 13 0-90
6 1-00 14 0-78
7 1-07 15 0-62
8 1-11 16 0-44
9 1:12

For atoms with weights in the range 5-13, f; and
[z do not differ by more than +£129,.

In practice it is not often required that fj should
approximate to fx for the whole of a range of values
of K. As an example, we may consider a structure
containing atoms of relative weights 6:7:8:17.

If we choose K, = 7, K, = 17 then

Ye,7,17 =091, y7.4,1, =1:00, g5 1, = 1:07,
Yin 1,17 = 1:00,

and, for all the atoms of the structure, f; and fj
will agree tolerably well. It should be noted that for
an atom of weight 12, in the range 6-17,

Yie,7, 10 = 121,

but since atoms of this weight do not occur in the
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structure the comparatively poor agreement between
f1z2 and fy, is of no consequence as far as equation (10)
is concerned.

It is not always possible to find values of A and By
such that f; and f; agree tolerably well for all the
atoms of a structure. If an atom of weight 12 was
present in the previous example, then, by choosing
K, = 8 and K, = 16, we have

yGyB, 16 = 0.84’ y7,8’16 = 0‘93, y&s’ 16 — 1'00 ,
V2,816 = 1°12, 154 16 = 0:93 .

This spreads the discrepancies between fj and fy
fairly uniformly among the various types of atom,
but whether or not this is the best thing to do will
depend on the composition of the structure. If there
are ng atoms of weight K, then the average contribu-
tion of this group of atoms to a structure factor is
proportional to K)/n;. The most sensible values of
4s and Bs would clearly be those which gave the least
fx—fx discrepancy for the type of atom for which
Ky/ny is greatest, and vice versa. It is not always
possible to satisfy this condition.

7. A test of the equation with atoms of more than
two types

The one-dimensional model structure used for this
test has the unit-cell dimension 20 A and contains
atoms for which the electron distribution has the form

(0w = K)/2.exp [—27u?] .
The unit cell contains

6 atoms with K =6 and coordinates +0-025,
+0-200 and +0-245,

4 atoms with K =8 and coordinates +0-100
and +0-470,

2 atoms with K = 12 and coordinates +0-150

and

4 atoms with K = 17 and coordinates +0-330
and +0:420.

The values of K)/n; are 147, 16:0, 17-0 and 34-0
for K = 6, 8, 12 and 17 respectively, Choosing K, = 8
and K, = 17 we have

V6,5, 17 = 0-84, V8,817 = 1'00, y15.4 4, = 1'15,
and yy7 417 = 1-00 .

In Table 7 the values of AsGy+BsHy and Fy are
compared for the range of h within the limits imposed
by Cu K« radiation. It will be seen that the agreement
Is quite good, the conventional reliability index being
12-19%.
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Table 7
h Gh Hn AgGn+ BgHn Fn
0 1950-2 15281 163-8 160-0
1 —271-0 —2454 —18-6 —14-9
2 608-4 6544 285 25-3
3 — 3286 —4405 — 4-2 — 83
4 — 80-9 — 788 — 4.7 — 21
5 —1782-8 — 8565 —34-0 —29-9
6 74-6 418 7-9 4-0
7 —586-4 — 5663 —33-8 —29:2
8 340-9 3857 13-3 9-9
9 285-2 2966 13-9 13-6
10 360-1 3765 17-1 181
11 481-9 5266 20-9 18:6
12 —108-8 — 691 — 89 — 77
13 —103-3 — 442 —10-0 — 88
14 —376-0 —4352 —14-4 — 186
15 —444-5 —3243 —29-7 —29-2
16 —587-4 — 6528 —22:7 —234
17 397-8 3594 20-1 22-3
18 —463-1 —4289 —21-7 —22-8
19 429-7 5798 10:6 9-9
20 53-3 526 2-2 0-4
21 2985 4246 65 77
22 — 34-1 — 983 0-9 1-1
23 127-6 1834 244 2:4
24 —338-9 —4604 — 74 — 74
25 — 13-3 — 44 — 06 — 08
26 —168-4 —2976 — 20 — 15

8. The application of the equation to
non-Gaussian atoms

So far, the atoms considered in this paper have been
of simple Gaussian shape and, where two or more types
of atom have been present in the same structure, they
have been assumed as having the same shape, differing
only in magnitude. However, when there are only two
types of resolved atoms in a structure, values of Ag
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and Bs can always be found to simultaneously satisfy
equations (5) and (6) whatever the shapes of the atoms.
Equation (10) can thus be used with no loss of accu-
racy.

For structures containing unresolved atoms all of
one type, such as the model structure in § 4, the
observed structure factors may be modified to cor-
respond to atoms of any shape, including Gaussian
if so desired. An example of this procedure was given
by Sayre (1952).

Structures containing atoms of more than two types
are a little more complicated. Values of 45 and Bs
may be chosen to satisfy equations (5) and (6) for
any two types of atom present in the structure but,
if this is done, the values of yz g, x, for the remain-
ing atoms will vary with the vector s. It is nevertheless
quite possible to find y ¢ z, x, as a function of s, should
this be required, as the scattering factors for the
various types of atom are usually known. However,
as has been previously stated, equation (10) is nor-
mally used only in a non-precise way and variations
in the values of yx x, x, will not be too important as
long as they stay within reasonable limits.

The author wishes to express his gratitude to Prof.
F. C. Williams, of the Manchester University Comput-
ing Machine Laboratory, for computing facilities with
the Ferranti Mark I computer.
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